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Abstract — An efficient orthogonal array was constructed with near balance and near the orthogonal property for the lowest common 

multiples of runs, using the balance coefficient criteria for determining near balance and J2 optimality criteria for orthogonal properties. The 

optimization and distance function forms of balance coefficient criteria were used for the classification of the designs. The Minimum 

Moment Aberration (MMA) and Minimum Aberration Projection (MAP) are compared using the optimization and distance function to 

determine the near balance criteria. The result indicated that, the MMA and MAP criteria was efficient using the optimization procedure of 

the balance coefficient. 
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1 INTRODUCTION                                                   

Factorial designs have broad applications in agricultural, en-
gineering, and scientific studies. In constructing and studying 
properties of factorial designs, traditional design theory treats 
all factors as nominal. However, this is not appropriate for 
experiments that involve quantitative factors. For designs with 
quantitative factors, a level permutation of one or more factors 
in a design matrix could result in different geometric struc-
tures, and, thus, different design properties. Two or three – 
levels factorial experiments are mostly used in the design of 
experimental research. In many situations, factors with more 
than two-three levels are desirable, when the factors are either 
qualitative or quantitative. As a result, designs with mixed-
level factors have been used more often to design experiments 
in modern industrial and agricultural trials, especially when 
only limited resources are allowed. Full factorial designs are 
test matrices that contain all possible combinations of the lev-
els of the factors. For example, if factor A has a level, factor B 
has b levels and factor C has c levels, then the full factorial 
design will contain abc combinations. The shorthand notation 
for this design is (413121), which displays the levels of the factor 
as the base numbers and the number of the factor as the expo-
nent.  
 
Of the desirable properties of factorial experiments are balance 
and orthogonal.  Balance requires a level of factors replicated 
the same number of times as any other level of this factor in an 
experiment. Orthogonal designs are pairwise linearly inde-
pendent, useful for assessing factor significance. As the factor 
levels increase, the number of runs increases, and maintaining 
the balance property requires too many runs in some situa-
tions.  

For example, consider a design with four factors, one with 
three levels, one with five levels, one with five levels, and the 
last with two levels.  To generate a balanced design, at least 
150 runs are needed.  Suppose an experimenter only has re-
sources for 50 tests, and the test objective is screening.  Then, a 
mechanism for creating mixed-level designs that are capable 
of meeting desirable resources is required.  

 
Minimum aberration has been widely recognized as a use-

ful criterion for selecting regular fractional factorials. Recent 
work on minimum aberration designs includes Chen and Ye 
(2004), Tang and Wu (1996), Chen and Hedayat (1996), and 
Cheng et al. (1999). Minimum aberration mixed-level designs 
are also balanced, Cheng et al, (1999), Deng and Tang (2002), 
Mukerjee and Wu (2001), Xu and Wu (2001). In situations 
where we have little or no knowledge about the effects that are 
potentially important, it is appropriate to select designs using 
the minimum aberration criterion [Fries and Hunter (1980)]. 
Wu and Hamada (2000) contain tables of many known mini-
mum aberration designs. Minimum aberration designs enjoy 
some attractive robust properties [Cheng, Steinberg, and Sun 
(1999) and Tang and Deng (1999)]. Much work has been done 
on the construction of minimum aberration designs. For de-
tails, we refer to Franklin (1984), Chen and Wu (1991), Chen 

(1992), Chen and Hedayat (1996), Tang and Wu (1996), Suen, 
Chen and Wu (1997) and many others. Sitter, Chen, and Feder 
(1997), Chen and Cheng (1999) and Cheng and Wu (2002) de-
veloped aberration criteria for blocked fractional factorials. For 
unbalanced mixed-level fractional factorial designs, the degree 
of balance was evaluated using a balance coefficient (Guo 
(2003)). As an extension of two level fractional factorial de-
signs, Franklin (1984) and Suen, Chen and Wu (1997) discuss 
the construction of multi-level minimum aberration designs. 
Xu and Wu (2001) proposed a generalized minimum aberra-
tion for mixed –level fractional factorial designs. Wang and 
Wu (1992) and Ankenman (1999) used minimum aberration 
designs in two-level and four – level designs. Murkerjee and 
Wu (2001) developed minimum aberration designs for mixed-
level fractional factorial designs involving factors with two or 
three distinct levels.   The objective of this paper is to compare 
the two forms of balance coefficient in a fractional factorial 
design using Minimum Moments Aberration and Minimum 
Aberration Projection at various runs sizes. 

 

2.0 Formulation of Balance Coefficient – Form I 
 
In form I, the motivation behind the definition of the bal-

ance coefficient is a simple optimization problem. The balance 
coefficient of design matrices will be derived from this optimi-
zation problem can be formulated as, 

 

Max        



K
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Where C is a constant. 
 

The balance coefficient for design matrix k, )(kF , is defined 

as the combination of the balanced coefficient of each column, 
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jw are the weights for the corresponding columns. 

 
This balance coefficient depends on the runs. To avoid this 

situation, a standardized balance coefficient is defined by us-
ing a standardized number of levels. The balanced coefficient 
is standardized when the number of levels is standardized. 
The notations ƒij is used instead of ijl . In this for a specific 
column and for a design matrix. 

 

3.0 Formulation of Balance Coefficient – Form II 

In form II, the definition of balance coefficient employs the 
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concept of the distance function. Consider a distance function- 
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where ,jlnT   is a fixed value. 

 

The balance coefficient under this definition becomes. 
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If ijf are used instead of ijl , then standardized jH and H can 

be given by  
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4.0 Minimum Moment Aberration Criterion 

The MGA, MG2A, and GMA criteria all require contrast coeffi-

cients of factors. Xu (2003) developed a Minimum Moment 

Aberration criterion (MMA), which does not need contrast 

coefficients. For a design matrix d, dij be the elements of ith row 

and jth column. The coincidence between two elements dij  and  

dlj is defined by  
ljij dd , , where  

ljij dd ,  = 1 if dij = dlj and 

0 otherwise. The value of  


m

j

ljij dd
1

,  measures the coinci-

dence between ith and jth rows of d. The kth power moment is 

defined by Xu (2003) as  
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For two designs d1 and d2, d1 is said to have less moment ab-

erration than d2 if there exists an r such that Kr (d1) < Kr (d2) and 
Kt (d1) = Kt (d2) for all t=1, …, r-1. Therefore, d1 is said to have 
minimum moment aberration if there is no other design with 
less moment aberration than d1. 

 
 

 
 
 
 
 
5.0 Table 1: Designs using Minimum Moment Aberration 

Criteria (MMA) in )432,( 111nOA  

 Minimum Moment Aberration Criteria  

Runs Designs  d)(K d),(K d),(K d),( 4321K   

6 Distance 

Function 

(1.267, 2.6, 5.667, 13)  

d2 

Optimization 

Procedure 

(0.8, 1.6, 3.6, 8.8) 

7 Distance 

Function (1.429, 3.667, 9.476, 26.43) 

d2 

Optimization 

Procedure (0.857, 1.714, 4.809, 10.286) 

8 Distance 

Function (1.643, 4.143, 11.286, 32) 

d2 

Optimization 

Procedure (0.821, 1.679, 3.964, 10.607) 

9 Distance 

Function (1.75, 4.611, 12.778, 36.611) 

d2 

Optimization 

Procedure (0.88, 1.94, 4.88, 13.28) 

10 Distance 

Function (1.889, 4.467, 11.622, 31.933) 

d2 

Optimization 

Procedure (0.88, 1.82, 3.67, 10.62) 

11 Distance 

Function (1.727, 4.2, 10.545, 28.2) 

d2 

Optimization 

Procedure (0.872, 2.036, 4.873, 12.509) 

12 Distance 

Function (1.697, 4.181, 11.060, 30.879) 

d2 

Optimization 

Procedure (0.909, 1.939, 4.727, 12.485) 

13 Distance 

Function (1.513, 3.487, 8.897, 24.103) 

d2 

Optimization 

Procedure (1.025, 2.077, 5.103, 13.462) 

14 Distance 

Function (2.494, 2.978, 7.132, 17.703) 

d2 

Optimization 

Procedure (1, 2.418, 10.099, 16.923) 

15 Distance 

Function (1.352, 2.971, 7.038, 18.371) 

d2 

Optimization 

Procedure (0.96, 2.37, 6.314, 17.457) 

16 Distance 

Function (1.267, 2.75, 7.05, 19) 

d2 Optimization (1.1, 2.608, 6.55, 17.483) 
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Procedure 

17 Distance 

Function (1.235, 6.169, 9.279, 26.779) 

d2 

Optimization 

Procedure (0.98, 4.93, 5.78, 15.93) 

18 Distance 

Function (1.261, 3.366, 10.189, 26.634) 

d2 

 Optimization 

Procedure (0.987, 2.229, 5.693, 15.562) 

 
 

The minimum aberration criteria for two selected designs us-

ing form I (Maximum) and form II (Minimum) method of bal-

ance coefficient, for 186  n .  

The observation shows that at 18,...,6,  whereiin  

 

                     )d()d( 1121 KK  ; 

 
This indicated that in all the runs mentioned, )d( 21K has a 

lesser aberration than )d( 11K  i.e. the design 
2d is a better 

fractional factorial of all possible designs in the runs considers. 
 

6.0 Moment Aberration Projection Criterion 

       Xu and Deng (2005) proposed a criterion called the 
Moment Aberration Projection (MAP) to address the draw-
back that kth power moment is not corresponding to k-factor 
interactions. MAP uses the coincidence matrix for all factor 
projections.  

 
For a given k (I ≤ k ≤ m), there are  
  k-factor projections.  

 
The frequency distribution f Kk-values of these projections 

is called the k-dimensional K-values distribution and is denot-
ed by Fk(d). For two designs d1 and d2, suppose that r is the 
smallest integer such that the r-dimensional K-value distribu-
tions are different, that is, Fr (d1) ≠ Fr (d2). Hence, d1 is said to 
have less MAP than d2 if Fr(d1) < Fr (d2).  

 
Moreover, the criterion MAP was developed for two-level 

non-regular designs and it also can be used in multi-level and 
mixed-level designs. 

 
 
7.0 Table 2: Designs using Minimum Aberration Projection 
(MAP) in )432,( 111nOA  

 

Ru

ns 

Distance Function 

(Minimum) 

Optimization Proce-

dure (Maximum)  

6 A = 

10  

AB = 

28  

AB

C = 

85 

A = 6 AB = 

13 

AB

C = 

54 

B = 

6 

AC = 

19 

 B = 3 AC = 

15 

 

C = 

3 

BC = 13  C = 3 BC = 8  

7 A = 

15   

AB = 

45 

AB

C = 

199 

A = 9 AB = 

23 

AB

C = 

101 

B = 

10 

AC = 

33 

 B = 6 AC = 

18 

 

C = 

6 

BC = 28  C = 3 BC = 13  

8 A = 

21 

AB = 

66  

AB

C = 

316 

A = 

12 

AB = 

29 

AB

C = 

111 

B = 

15 

AC = 

51 

 B = 6 AC = 

24 

 

C = 

10 

BC = 45  C = 4 BC = 17  

9 A = 

28   

AB = 

181 

AB

C = 

460 

A = 

16 

AB = 

39 

AB

C = 

176 

B = 

21 

AC = 

73 

 B = 9 AC = 

33 

 

C = 

15 

BC = 61   C = 7 BC = 30  

10 A = 

36 

AB = 

120 

AB

C = 

523 

A = 

20 

AB = 

52 

AB

C = 

165 

B = 

28 

AC = 

87 

 B = 

12 

AC = 

40 

 

C = 

21 

BC = 79  C = 8 BC = 30  

11 A = 

37  

AB = 

129 

AB

C = 

580 

A = 

25 

AB = 

70 

AB

C = 

268 

B = 

36 

AC = 

87 

 B = 

17 

AC = 

55 

 

C = 

28 

BC = 

106 

 C = 

10 

BC = 39  

12 A = 

39  

AB = 

119 

AB

C = 

730 

A = 

30 

AB = 

80 

AB

C = 

312 

B = 

37 

AC = 

119 

 B = 

18 

AC = 

66 

 

C = 

36 

BC = 

145 

 C = 

12 

BC = 46  

13 A = 

42 

AB = 

123 

AB

C = 

694 

A = 

36 

AB = 

97 

AB

C = 

398 

B = 

39 

AC = 

151 

 B = 

23 

AC = 

83 

 

C = 

37 

BC = 

126 

 C = 

15 

BC = 71  
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14 A = 

46 

AB = 

156 

AB

C = 

649 

A = 

42 

AB = 

103 

AB

C = 

919 

B = 

42 

AC = 

131 

 B = 

26 

AC = 

102 

 

C = 

39 

BC = 

119 

 C = 

20 

BC = 78  

15 A = 

51  

AB = 

173 

AB

C = 

739 

A = 

49 

AB = 

129 

AB

C = 

663 

B = 

46 

AC = 

137 

 B = 

31 

AC = 

113 

 

C = 

42 

BC = 

132 

 C = 

25 

BC = 82  

16 A = 

57   

AB = 

158 

AB

C = 

846 

A = 

56 

AB = 

172 

AB

C = 

786 

B = 

47 

AC = 

159 

 B = 

39 

AC = 

153 

 

C = 

47 

BC = 

169 

 C = 

37 

BC = 

126 

 

17 A = 

64   

AB = 

238 

AB

C = 

126

2 

A = 

64 

AB = 

180 

AB

C = 

786 

 B = 

57 

AC = 

209 

 B = 

42 

AC = 

137 

 

 C = 

49 

BC = 

170 

 C = 

28 

BC = 

116 

 

18 A = 

72   

AB = 

248 

AB

C = 

155

9 

A = 

72 

AB = 

189 

AB

C = 

871 

 B = 

64 

AC = 

243 

 B = 

45 

AC = 

134 

 

 C = 

57 

BC = 

219 

 C = 

34 

BC = 

141 

 

 
 
 
8.0 Table 3: Summary of Minimum Aberration Projection 

(MAP): Frequency distribution of Kk-Value of factor projec-
tion in )432,( 111nOA  

 

 Frequency distribution  

Ru

ns 

K – Factor 

Projection (K-

Value) 

Distance 

Function 

(d1) 

Optimi-

zation 

(d2) 

Deci-

sion 

6 F1: (10, 6, 3)  (1,1,1) (0,1, 2) d2 

F2: (28, 19, 15, 

13, 8) 

(1,1,0,1,0) (0,0,1,1,1

) 

 

F3: (85, 54) (1,0) (0,1)  

7 F1: 

(15,10,9,6,6,3) 

(1,1,0,1,0) (0,0,1,1,1

) 

d2 

F2: 

(45,33,28,23,1

8,13) 

(1,1,1,0,0,0

) 

(0,0,0,1,1,

1) 

 

F3: (199,101) (1,0) (0,1)  

8 F1: 

(21,15,12,10,6,

4) 

(1,1,0,1,0,0

) 

(0,0,1,0,1,

1) 

d2 

F2: 

(66,51,45,29,2

4,17) 

(1,1,1,0,0) (0,0,1,1,1

) 

 

F3: (316,111) (1,0) (0,1)  

9 F1: 

(28,21,16,15,9,

7) 

(1,1,0,1,0,0

) 

(0,0,1,0,1,

1) 

d2 

F2: 

(181,73,61,39,

33,30) 

(1,1,1,0,0,0

) 

(0,0,0,1,1,

1) 

 

F3: (460,176) (1,0) (0,1)  

10 F1: 

(36,28,21,20,1

2,8) 

(1,1,1,0,0,0

) 

(0,0,0,1,1,

1) 

d2 

F2: 

(120,87,79,52,

40,30) 

(1,1,1,0,0,0

) 

(0,0,0,1,1,

1) 

 

F3: (523,165) (1,0) (0,1)  

11 F1: 

(37,36,28,25,1

7,10) 

(1,1,1,0,0,0

) 

(0,0,0,1,1,

1) 

d2 

F2: (129,106, 

87,70, 55,39) 

(1,1,1,0,0,0

) 

(0,0,0,1,1,

1) 

 

F3: (580,268) (1,0) (0,1)  

12 F1: 

(39,37,36,30, 

18,12) 

(1,1,1,0,0,0

) 

(0,0,0,1,1,

1) 

d2 

F2: 

(145,119,80,66

,46) 

(1,2,0,0,0) (0,0,1,1,1

) 

 

F3: (730,312) (1,0) (0,1)  

13 F1: 

(42,39,37,36,2

3,15) 

(1,1,1,0,0,0

) 

(0,0,0,1,1,

1) 

d2 

F2: 

(151,126,123,9

7,83,71) 

(1,1,1,0,0,0

) 

(0,0,0,1,1,

1) 

 

F3: (694, 398) () ()  

14 F1: (46,42,39, 

26,20) 

(1,1,1,0,0) (0,1,0,1,1

) 

d2 

F2: (156, 

131,119, 103, 

(1,1,1,0,0,0

) 

(0,0,0,1,1,

1) 
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102,78) 

F3: (919, 649) (0,1) (1,0)  

15 F1: 

(51,49,46,42,3

1,25) 

(1,1,1,0,0,0

) 

(0,0,0,1,1,

1) 

d2 

F2: 

(173,137,132,1

29,113,82) 

(1,1,1,0,0,0

) 

(0,0,0,1,1,

1) 

 

F3: (739, 663) (1,0) (0,1)  

16 F1: 

(57,56,47,39,3

7) 

(1,0,2,0,0) (0,1,0,1,1

) 

d2 

F2: 

(172,169,159,1

58,153,126) 

(0,1,1,1,0,0

) 

(1,0,0,0,1,

1) 

 

F3: (846,786) (1,0) (0,1)  

17 F1: 

(64,57,49,42,2

8) 

(1,1,1,0,0) (1,0,0,1,1

) 

d2 

F2: 

(238,209,180,1

70,137,116) 

(1,1,0,1,0,0

) 

(0,0,1,0,1,

1) 

 

F3: (1262, 786) (1,0) (0,1)  

18 F1: 

(72,64,57,45,3

4) 

(1,1,1,0,0) (1,0,0,1,1

) 

d2 

F2: 

(248,243,219,1

89,141,134) 

(1,1,1,0,0,0

) 

(0,0,0,1,1,

1) 

 

F3: (1559, 871) (1,0) (0,1)  

 
 
9.0 Table 4: Summary of design comparison 
 

Balance coeffi-

cient form 

 )432,( 111nOA  

Runs MMAC MAP 

Optimization 6 d2 d2 

Optimization 7 d2 d2 

Optimization 8 d2 d2 

Optimization 9 d2 d2 

Optimization 10 d2 d2 

Optimization 11 d2 d2 

Optimization 12 d2 d2 

Optimization 13 d2 d2 

Optimization 14 d2 d2 

Optimization 15 d2 d2 

Optimization 16 d2 d2 

Optimization 17 d2 d2 

Optimization 18 d2 d2 

 

 

10.0 CONCLUSION 
 

The result indicated that, the MMA and MAP criteria was 
efficient using the optimization procedure of the balance coef-
ficient. 
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